报告题目:Existence and non-uniqueness of solutions to a class of Monge-Ampere type equations
报告人:鲁建
报告摘要:We have studied a class of Monge-Ampere type equations, which relate to the Orlicz-Brunn-Minkowski theory in modern convex geometry. These equations are fully nonlinear partial differential equations defined on the unit sphere in Euclidean space. They may be degenerate or singular in different cases. We will talk about some recent results about existence and non-uniqueness of solutions to these equations.
报告时间:2020年1月9日 16:30-17:30
报告地点: 数学科学学院305室
报告人简介:鲁建,2013年在清华大学获博士学位,现为华南师范大学副教授。研究方向主要为偏微分方程,特别是Monge-Ampere 型方程及其在几何中的应用。在 Adv. Math.、J. Funct. Anal.、Trans. Amer. Math. Soc.、Calc. Var. Partial Differential Equations、J. Differential Equations 等数学期刊上发表 SC收录论文10余篇。主持国家自然科学基金面上项目等多项课题。