报告题目:Dynamic behavior for damped wave equation
报告人: 孟凤娟 教授 江苏理工大学
报告地点:数学科学学院301
报告时间:2025年11月11日,15:00-16:00
报告人简介:孟凤娟,江苏理工学院教授,南京大学理学博士,新加坡国立大学访问学者,江苏高校“青蓝工程”中青年学术带头人,优秀青年骨干教师,江苏省青年科学家年会执委。主要从事非线性泛函分析与无穷维动力系统的研究,主持国家自然科学基金4项,在J. Differential Equations, Discrete Contin. Dyn. Syst. Ser. B, Topol. Methods Nonlinear Anal.等刊物发表论文40余篇,科研成果获江苏省工业与应用数学学会青年科技奖1项,江苏省高等学校科学技术研究成果奖2项。
报告摘要: This study investigates a semilinear wave equation characterized by nonlinear damping $g(u_t) $ and nonlinearity $f(u)$. First, the well-posedness of weak solutions across broader exponent ranges for $g$ and $f$ is established, by utilizing a priori space-time estimates. Moreover, the existence of a global attractor in the phase space $H^1_0(\Omega)\times L^2(\Omega)$ is obtained. Furthermore, it is proved that this global attractor is regular, implying that it is a bounded subset of $(H^2(\Omega)\cap H^1_0(\Omega))\times H^1_0(\Omega)$.