报告题目:Rota-Baxter groups, post-groups and post-groupoids
主讲人:生云鹤 教授(吉林大学)
摘要:Rota-Baxter Lie algebras, post-Lie algebras and post-Lie algebroids have various important applications and it is natural to consider the corresponding global objects. We introduce the notions of Rota-Baxter groups, post-groups and post-groupoids. In particular, one can obtain Rota-Baxter Lie algebras, post-Lie algebras and post-Lie algebroids from Rota-Baxter Lie groups, post-Lie groups and post-Lie groupoids via differentiation respectively. These global structures are related to the factorization problem, (Lie-)Butcher groups, skew-left bracs, and can be used to construct set-theoretical (quiver-theoretical) solutions of the Yang-Baxter equation. As the global objects corresponding to Rota-Baxter Lie algebras, post-Lie algebras and post-Lie algebroids,it is believed that these structures have potential applications in many fields, e.g. in control theory, numerical analysis, regularity structures, representation theory and differential geometry.
报告时间:2024年12月26日下午15:45 - 16:45
报告地点:(线上)腾讯会议:756-290-980
报告人简介:
生云鹤,吉林大学数学学院副院长、教授、博士生导师,吉林省政府津贴专家(省有突出贡献专家)。主要研究领域为Poisson几何、非线性李理论、高阶李理论与数学物理等。在《Adv. Math.》《Math. Ann.》《Comm. Math. Phys.》《Trans. Amer. Math. Soc.》《Int. Math. Res. Not. IMRN》《J. Noncommut. Geom.》《J. Algebra》《Pacific J. Math.》等著名期刊发表学术论文90余篇。主持国家自然科学优秀青年基金、面上项目、青年项目、天元项目以及博士后基金项目等多项课题,并担任《数学进展》、《J. Nonlinear Math. Phys.》杂志编委。