报告题目:Relaxed Euler systems and convergence to Navier-Stokes equations
摘要:Consider the approximation of Navier-Stokes equations for a Newtonian fluid by Euler type systems with relaxation. This requires to decompose the second-order derivative terms of the velocity into first-order terms. We use Hurwitz-Radon matrices for this decomposition. We prove the convergence of the approximate systems to the Navier-Stokes equations locally in time for smooth initial data and globally in time for initial data near constant equilibrium states.
报告时间:2019年8月6日,上午:9:00-10:00
报告地点:数学科学学院三楼报告厅304室
报告人简介:彭跃军,法国克莱蒙大学教授,博士生导师。主要研究领域是偏微分方程理论与应用研究,在双曲方程组和等离子体模型做了突出的成果,已经发表80余篇SCI学术论文,多篇论文发表于国际权威期刊Communication in Partial Differential Equations, SIAM Journal on Mathematical Analysis, Journal of Differential Equations, Journal de Mathematiques Pures et Appliquees