报告人:裘松良教授(浙江理工大学)
报告题目:The Recent Results for the Ramanujan R-Function With Applications
报告摘要:According to different requirements in applications, we present several kinds of series expansions for the Ramanujan $R$-function (or the Ramanujan constant) $R(a,c-a)=-2\gamma-\psi(a)-\psi(c-a)$ and its special case $R(a)=R(a,1-a)$, where $\psi$ is the psi function, thus providing very effective tools, techniques and methods for us to reveal properties of $R(a,b)$ and $R(a)$. By these series expansions, some monotonicity and convexity properties and several new asymptotically sharp bounds are derived for $R(a,c-a)$ and $R(a)$, and many known results for them can be easily improved or reproved by much simpler methods. Applying these results, we can obtain some properties of the Gaussian hyper-geometric functions and the generalized quasi-conformal distortion functions. In addition, as by-products, several identities and inequalities satisfied by the Riemann zeta function and its related special functions are obtained, and a method for us to find the sum of the series $\sum_{k=1}^{\infty}(2k+1)(k^2+k)^{-n-1}$, for each natural number $n$, is presented.
报告时间:8月7日下午15:00-16:00
报告地点:数学院三楼学术报告厅
裘松良教授个人简况
裘松良,浙江富阳人,博士、教授。曾任浙江理工大学校长、中国电子教育学会第四~第五届理事会副理事长;浙江省应用数学研究会理事长,中国纺织服装教育学会副会长;浙江大学理学院兼职教授。长期从事拟共形映照、解析函数、Ramanujan模方程与特殊函数等领域的研究,在著名的有悠久历史的Mori常数问题、Schottky上界问题等方面的研究中取得了实质性进展,其成果居世界领先水平;与M.Vuorinen等一起开创了拟共形映照、特殊函数与数论之间的交叉研究,在《中国科学》、《数学学报》、Proc. Amer. Math. Soc., SIAM J. Math. Anal., Studia Math., J. Math. Anal. Appl. 等国内外重要刊物上发表了130余篇论文,完成了数项国内外课题。多次应邀赴美国、芬兰、新西兰、香港等国家和地区学术访问、合作研究和工作。