报告题目:Generalized Knorrer's Periodicity Theorem
主讲人:何济位 教授(杭州师范大学)
摘要:Given quadric hypersufaces $A/(f)$ and $B/(g)$ such that $A\otimes B$ is noetherian, if any two of $A/(f)$, $B/(g)$ and $(A\otimes B)/(f+g)$ are graded isolated singularity, then so is the third one. Furthermore, by introducing the notion of simple graded isolated singularity, we generalize Kn\"{o}rrer's periodicity theorem for quaric hypersurfaces and show a triangle equivalence $\underline{\mcm} A/(f) \cong \underline {\mcm}(A\otimes B)/(f+g)$ of stable categories of maximal Cohen-Macaulay modules, provided that $B/(g)$ is a simple graded isolated singularity of 0-type. As an application, we deduce a triangle equivalence $\underline{\mcm} (A/(f)) ^{\#} \cong \underline{\mcm} (A/(f)) \times \underline {\mcm} (A/(f))$ for a noncommutative conic $A/(f)$, where $(A/(f))^\# = A[x]/(f+x^2)$ is the double branched cover.
报告时间:2024年12月28日上午10:00 - 10:50
报告地点:数学科学学院301室
报告人简介:
何济位,杭州师范大学数学学院教授、副院长,2004年毕业于浙江大学数学系,获博士学位。2004年9月至2012年02月先后在复旦大学数学学院和比利时安特卫普大学从事博士后研究工作。浙江省省高校中青年学科带头人。主持国家自然科学基金项目3项,省部级基金4项。主要研究领域为非交换代数,学术论文发表在Trans AMS、J Noncommut Geom、Math Z、Israel J Math、J Algebra、Proc AMS、中国科学等国内外期刊上。