题目: Dispersive Limit of the Euler-Poisson Equation
摘要: The nonlinear Schr\"{o}dinger (NLS) equation can be derived as a formal approximation equation describing the envelopes of slowly modulated spatially and temporarily oscillating wave packet-like solutions to the ion Euler-Poisson equation. In talk, we rigorously justify such approximation by giving error estimates in Sobolev norms between exact solutions of the ion Euler-Poisson system and the formal approximation obtained via the NLS equation. These is a joint work with Dr. Huimin LIU
报告时间:2024年10月28日下午:14:00-15:00. 腾讯会议:526-273-850
个人简介: 蒲学科,教授,博士生导师,现任广州大学数学与信息科学学院副院长。主要从事非线性偏微分方程的数学理论研究。目前已与他人在《Comm. Math. Phys.》、 《Arch. Ration. Mech Anal.》等高水平期刊上合作发表SCI学术论文60余篇、出版专著4部,主持国家自然科学基金项目三项。